Estimating term structure of interest rates: neural network vs one factor parametric models

نویسنده

  • F. Abid
چکیده

The aim of this paper is twofold; first we concentrate on the work of Vasicek (1977) and Cox, Ingersoll and Ross (1985). We examine and test empirically each model and discuss its performance in predicting the term structure of interest rates using a parametric estimating approach GMM (Generalized Moments Method). Second we estimate the term structure of interest rate dynamics using a nonparametric approach ANN (Artificial Neural Network). Two neural network models are performed. The first model uses spreads between interest rates of 10 different maturities as the only explanatory variable of interest rate changes. The second model introduces two factors, spreads and interest rates' levels. Using historical U.S. Treasury bill rates and Treasury bond yields, we compare the ability of each model to predict the term structure of interest rates. Data are daily and cover the period from 3 January 1995 to 29 December 2000. Results suggest that neural network, Vasicek (1977) and Cox, Ingersoll and Ross (1985) models generate different yield curves. Neural network models outperform the parametric standard models. The most successful forecast is obtained with a two factors neural network model.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimating Efficiency of Monocrystalline and Polycrystalline Photovoltaic Panels Using Neural Network Models

The energy production analysis of a  photovoltaic system depends on the panels tempreture and solar radiation. An endless and free source of solar energy received at the Earth's surface depends on the geographical location, different hours of day and seasons of the year.Hence, its correct evaluation is a strategic factor for the feasibility of a solar system. in this paper, a new method of ener...

متن کامل

Estimating Suspended Sediment by Artificial Neural Network (ANN), Decision Trees (DT) and Sediment Rating Curve (SRC) Models (Case study: Lorestan Province, Iran)

The aim of this study was to estimate suspended sediment by the ANN model, DT with CART algorithm and different types of SRC, in ten stations from the Lorestan Province of Iran. The results showed that the accuracy of ANN with Levenberg-Marquardt back propagation algorithm is more than the two other models, especially in high discharges. Comparison of different intervals in models showed that r...

متن کامل

Hybrid Models Performance Assessment to Predict Flow of Gamasyab River

Awareness of the level of river flow and its fluctuations at different times is one of the significant factor to achieve sustainable development for water resource issues. Therefore, the present study two hybrid models, Wavelet- Adaptive Neural Fuzzy Interference System (WANFIS) and Wavelet- Artificial Neural Network (WANN) are used for flow prediction of Gamasyab River (Nahavand, Hamedan, Iran...

متن کامل

Hybrid Models Performance Assessment to Predict Flow of Gamasyab River

Awareness of the level of river flow and its fluctuations at different times is one of the significant factor to achieve sustainable development for water resource issues. Therefore, the present study two hybrid models, Wavelet- Adaptive Neural Fuzzy Interference System (WANFIS) and Wavelet- Artificial Neural Network (WANN) are used for flow prediction of Gamasyab River (Nahavand, Hamedan, Iran...

متن کامل

Models of EFL Learners’ Vocabulary Development: Spreading Activation vs. Hierarchical Network Model

Semantic network approaches view organization or representation of internal lexicon in the form of either spreading or hierarchical system identified, respectively, as Spreading Activation Model (SAM) and Hi- erarchical Network Model (HNM). However, the validity of either model is amongst the intact issues in the literature which can be studied through basing the instruction compatible wi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003